Volume 5, Issue 3 (8-2023)                   IJMCL 2023, 5(3): 1-12 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Croce R, Martineau D, Smith W. (2023). Effect of an Acute Bout of Low-, Moderate-, and High-Intensity Aerobic Exercise on Immediate and Delayed Fractionated Response Time. IJMCL. 5(3), 1-12. doi:10.61186/ijmcl.5.3.1
URL: http://ijmcl.com/article-1-151-en.html
University of New Hampshire , rvc@unh.edu
Abstract:   (607 Views)
Background: Information processing and cognition can be enhanced in various ways. The present study investigated the role of three intensities of aerobic exercise (Low Intensity [LIE], Moderate Intensity [MIE], High Intensity [HIE]) on information processing speed using a response time paradigm.
Methods:  Twenty-seven adult male and female volunteers (16, male; 11, female) ages 18 to 26 years (Mean age = 21.9 years) were randomly assigned to LIE, MIE, and HIE exercise groups. Exercise was performed on a bike ergometer. Participants took part in single choice (SC), multichoice (MC), and dual task (DT) performance tasks before exercise and 1 min and 20 min postexercise. Information processing speed was analyzed by calculating total response time (RPT), reaction time (RT), and movement time (MT) on a response time apparatus.
Results: For each performance task, the impact of three intensities of exercise on RPT, RT and MT were analyzed using separate 3 (Group [exercise intensity]) x 3 (Test Block [pre-exercise, 1 min postexercise, 20 min postexercise]) repeated measures ANOVA.  Data analyses indicated: (1) participants in each exercise condition improved RT and RPT on MC (p < 0.001; p < 0.01, respectively) and DT (p < 0.05, p < 0.05, respectively) tasks but not on the SC task and these improvements were observed both immediately (1 min) and short-term (20 min) postexercise.
Conclusions: As RT represents more CNS mechanisms than movement per se, the faciliatory effect of exercise on the speed of task completion involved more speed of cortical processing than speed of movement when completing the task. All exercise intensity levels investigated had a positive impact on the time required to complete MC and DT tasks.
Full-Text [PDF 1098 kb]   (152 Downloads)    
Type of Study: Original Article | Subject: 2. Motor control
Received: 2023/04/28 | Accepted: 2023/08/8

1. Cattuzzo, M. T., dos Santos Henrique, R., Ré, A. H. N., de Oliveira, I. S., Melo, B. M., de Sousa Moura, M., . . . Stodden, D. (2016). Motor competence and health related physical fitness in youth: A systematic review. Journal of science and medicine in sport, 19(2), 123-129. [DOI:10.1016/j.jsams.2014.12.004] [PMID]
2. Cauraugh, J. H., Gabert, T. E., & White, J. J. (1990). Tennis serving velocity and accuracy. Perceptual and Motor Skills, 70(3), 719-722. [DOI:10.2466/pms.1990.70.3.719]
3. Chappell, A., Molina, S. L., McKibben, J., & Stodden, D. F. (2016). Examining impulse-variability in kicking. Motor Control, 20(3), 222-232. [DOI:10.1123/mc.2014-0062] [PMID]
4. Cohen, J. (2013). Statistical power analysis for the behavioral sciences: Academic press. [DOI:10.4324/9780203771587]
5. Engelhorn, R. (1997). Speed and accuracy in the learning of a complex motor skill. Perceptual and Motor Skills, 85(3), 1011-1017. [DOI:10.2466/pms.1997.85.3.1011] [PMID]
6. Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of experimental psychology, 47(6), 381. [DOI:10.1037/h0055392] [PMID]
7. Fleisig, G., Chu, Y., Weber, A., & Andrews, J. (2009). Variability in baseball pitching biomechanics among various levels of competition. Sports Biomechanics, 8(1), 10-21. [DOI:10.1080/14763140802629958] [PMID]
8. Hancock, G. R., Butler, M. S., & Fischman, M. G. (1995). On the problem of two-dimensional error scores: Measures and analyses of accuracy, bias, and consistency. Journal of Motor Behavior, 27(3), 241-250. [DOI:10.1080/00222895.1995.9941714] [PMID]
9. Juras, G., Slomka, K., & Latash, M. (2009). Violations of Fitts' law in a ballistic task. Journal of Motor Behavior, 41(6), 525-528. [DOI:10.3200/35-08-015] [PMID]
10. Langendorfer, S., Roberton, M. A., & Stodden, D. (2013). Biomechanical aspects of the development of object projection skills. In Paediatric biomechanics and motor control (pp. 180-205): Routledge.
11. Logan, S. W., Robinson, L. E., Getchell, N., Webster, E. K., Liang, L.-Y., & Golden, D. (2014). Relationship between motor competence and physical activity: A systematic review. Research quarterly for exercise and sport, 85(S1), A14.
12. Mally, K. K., Battista, R. A., & Roberton, M. A. (2011). Distance as a control parameter for place kicking. Journal of Human Sport and Exercise, 6(1), 122-134. [DOI:10.4100/jhse.2011.61.14]
13. Molina, S. L., Bott, T. S., & Stodden, D. F. (2019). Applications of the speed-accuracy trade-off and impulse-variability theory for teaching ballistic motor skills. Journal of Motor Behavior, 51(6), 690-697. [DOI:10.1080/00222895.2019.1565526] [PMID]
14. Molina, S. L., & Stodden, D. F. (2018). Examining impulse-variability theory and the speed-accuracy trade-off in children's overarm throwing performance. Motor Control, 22(2), 199-210. [DOI:10.1123/mc.2016-0046] [PMID]
15. Mutha, P. K., & Sainburg, R. L. (2007). Control of velocity and position in single joint movements. Human movement science, 26(6), 808-823. [DOI:10.1016/j.humov.2007.06.001] [PMID] [PMCID]
16. Newell, K., Carlton, L., & Hancock, P. (1984). Kinetic analysis of response variability. Psychological Bulletin, 96(1), 133. [DOI:10.1037/0033-2909.96.1.133]
17. Newell, K. M., Carlton, L., Carlton, M. J., & Halbert, J. (1980). Velocity as a factor in movement timing accuracy. Journal of Motor Behavior, 12(1), 47-56. [DOI:10.1080/00222895.1980.10735204] [PMID]
18. Newell, K. M., Hoshizaki, L., Carlton, M. J., & Halbert, J. (1979). Movement time and velocity as determinants of movement timing accuracy. Journal of Motor Behavior, 11(1), 49-58. [DOI:10.1080/00222895.1979.10735171] [PMID]
19. Plamondon, R., & Alimi, A. M. (1997). Speed/accuracy trade-offs in target-directed movements. Behavioral and brain sciences, 20(2), 279-303. [DOI:10.1017/S0140525X97001441] [PMID]
20. Roberton, M. (1996). Put that target away until later: Developing skill in object projection. Future Focus, 17(1), 6-8.
21. Sacko, R. S., Utesch, T., Cordovil, R., De Meester, A., Ferkel, R., True, L., . . . Stodden, D. F. (2021). Developmental sequences for observing and assessing forceful kicking. European Physical Education Review, 27(3), 493-511. [DOI:10.1177/1356336X20962134]
22. Schmidt, R. A., & Sherwood, D. E. (1982). An inverted--U relation between spatial error and force requirements in rapid limb movements: Further evidence for the impulse-variability model. Journal of Experimental Psychology: Human Perception and Performance, 8(1), 158. [DOI:10.1037/0096-1523.8.1.158]
23. Schmidt, R. A., Zelaznik, H., Hawkins, B., Frank, J. S., & Quinn Jr, J. T. (1979). Motor-output variability: a theory for the accuracy of rapid motor acts. Psychological review, 86(5), 415. [DOI:10.1037/0033-295X.86.5.415]
24. Sherwood, D. E., & Schmidt, R. A. (1980). The relationship between force and force variability in minimal and near-maximal static and dynamic contractions. Journal of Motor Behavior, 12(1), 75-89. [DOI:10.1080/00222895.1980.10735208] [PMID]
25. Sherwood, D. E., Schmidt, R. A., & Walter, C. B. (1988). The force/force-variability relationship under controlled temporal conditions. Journal of Motor Behavior, 20(2), 106-116. [DOI:10.1080/00222895.1988.10735436] [PMID]
26. Stodden, D. F., Pesce, C., Zarrett, N., Tomporowski, P., Ben-Soussan, T. D., Brian, A., . . . Weist, M. D. (2023). Holistic Functioning from a Developmental Perspective: A New Synthesis with a Focus on a Multi-tiered System Support Structure. Clinical Child and Family Psychology Review, 26(2), 343-361. [DOI:10.1007/s10567-023-00428-5] [PMID]
27. Urbin, M. (2012). Sensorimotor control in overarm throwing. Motor Control, 16(4), 560-578. [DOI:10.1123/mcj.16.4.560] [PMID]
28. Urbin, M. (2013). Visual regulation of overarm throwing performance. Experimental brain research, 225, 535-547. [DOI:10.1007/s00221-012-3394-z] [PMID]
29. Urbin, M., Stodden, D., Boros, R., & Shannon, D. (2012). Examining impulse-variability in overarm throwing. Motor Control, 16(1), 19-30. [DOI:10.1123/mcj.16.1.19] [PMID]
30. Urbin, M., Stodden, D., & Fleisig, G. (2013). Overarm throwing variability as a function of trunk action. Journal of Motor Learning and Development, 1(4), 89-95. [DOI:10.1123/jmld.1.4.89]
31. Urbin, M., Stodden, D. F., Fischman, M. G., & Weimar, W. H. (2011). Impulse-variability theory: Implications for ballistic, multijoint motor skill performance. Journal of Motor Behavior, 43(3), 275-283. [DOI:10.1080/00222895.2011.574172] [PMID]
32. van den Tillaar, R., & Ettema, G. (2006). A comparison between novices and experts of the velocity-accuracy trade-off in overarm throwing. Perceptual and Motor Skills, 103(2), 503-514. https://doi.org/10.2466/pms.103.2.503-514 [DOI:10.2466/PMS.103.6.503-514] [PMID]
33. Wagner, H., Pfusterschmied, J., Klous, M., von Duvillard, S. P., & Müller, E. (2012). Movement variability and skill level of various throwing techniques. Human movement science, 31(1), 78-90. [DOI:10.1016/j.humov.2011.05.005] [PMID]
34. Wulf, G., & Shea, C. H. (2002). Principles derived from the study of simple skills do not generalize to complex skill learning. Psychonomic bulletin & review, 9(2), 185-211. [DOI:10.3758/BF03196276] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and Permissions
Creative Commons License This work is licensed under Attribution 4.0 International (CC BY 4.0).

© 2024 CC BY 4.0 | International Journal of Motor Control and Learning

Designed & Developed by : Yektaweb