Volume 5, Issue 3 (8-2023)                   IJMCL 2023, 5(3): 36-42 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Molina S, Stodden D. (2023). Examining Impulse-Variability Theory and the Speed-Accuracy Trade-Off in Children’s Kicking Performance. IJMCL. 5(3), 36-42. doi:10.61186/ijmcl.5.3.36
URL: http://ijmcl.com/article-1-149-en.html
University of the Ozarks , smolina@ozarks.edu
Abstract:   (1033 Views)
Background: The purpose of this study was to examine the applicability of impulse-variability theory and the speed-accuracy trade-off in children’s kicking performance. Methods: Forty-three children ages 9-11 were instructed to kick a ball at a target at 45%, 65%, 85%, and 100% of their maximum kicking speed. Results: Results indicated a significant quadratic relationship in variable error across the target conditions (p=0.048), such that children demonstrated significantly lower variable error at 65% versus 100% max speed. Additionally, there was a significant inverse linear relationship was indicated for spatial error (p<.0001), with post-hoc analyses indicating that mean radial error at <59%, 60-69%, and 70-79% of maximum speed was higher than at >90% of maximum speed. Conclusion: These data demonstrated that principles of impulse-variability theory (i.e., Inverted-U function) and the speed-accuracy trade-off were not supported for the multi-joint ballistic skill of kicking in this sample of children. These results, along with other recent data, imply a need to reevaluate instructional emphases when promoting the learning of multi-joint ballistic skills such as kicking.
Full-Text [PDF 1024 kb]   (258 Downloads)    
  • Examining motor control theories in children’s kicking performances.
  • Failing to support the speed-accuracy trade-off in children’s kicking performances.
  • Failing to support impulse-variability theory in children’s kicking performances.

Type of Study: Original Article | Subject: 2. Motor control
Received: 2023/05/13 | Accepted: 2023/08/6

References
1. Audiffren, M., Tomporowski, P. D., & Zagrodnik, J. (2008). Acute exercise and information processing: Energizing motor processes during a choice reaction time task. Acta Psychologica, 129, 410-419. DOI: 10.1016/j.actpsy.2008.09.006 [DOI:10.1016/j.actpsy.2008.09.006] [PMID]
2. Badre, D., & Nee, D. E. (2018). Frontal cortex and Hierarchical control of behavior (2018). Trends in Cognitive Science, 22(2), 170-188. DOI: 10.1016/j.tics.2017.11.005 [DOI:10.1016/j.tics.2017.11.005] [PMID] [PMCID]
3. Basso, J. C., & Suzuki, W. A. (2017). The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: A review. Brain Plasticity, 2, 127-152. DOI: 10.3233/BPL-160040 [DOI:10.3233/BPL-160040] [PMID] [PMCID]
4. Baylor, A. M., & Spirduso, W.W. (1988). Systematic aerobic exercise and components of reaction time in older women. Journal of Gerontology, 43(5), 121-126. DOI: 10.1093/geronj/43.5.p121 [DOI:10.1093/geronj/43.5.P121] [PMID]
5. Burle, B., Vidal, F., Tandonnet, C., & Hasbroucq, T. (2004). Physiological evidence for response inhibition in choice reaction time tasks. Brain and Cognition, 56(2), 153-164. • DOI: 10.1016/j.bandc.2004.06.004 [DOI:10.1016/j.bandc.2004.06.004] [PMID]
6. Cantelon, J. A. & Giles, G. E. (2021). A review of cognitive changes during acute aerobic exercise. Frontiers in Psychology, 12, 1-29 (Article 653158). DOI: 10.3389/fpsyg.2021.653158 [DOI:10.3389/fpsyg.2021.653158] [PMID] [PMCID]
7. Chang, Y.-K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87-101. DOI: [DOI:10.1016/j.brainres.2012.06.039]
8. Cooper, C. J. (1973). Anatomical and physiological mechanisms of arousal with specific reference to the effects of exercise. Ergonomics, 16(5), 601-609. [DOI:10.1080/00140137308924551] [PMID]
9. DOI: 10.1080/00140137308924551 [DOI:10.1080/00140137308924551] [PMID]
10. Cox, E. P., O'Dwyer, N., Cook, R. Vetter, M., Cheng, H. L., Rooney, K., O'Connor, H. (2016). Relationship between physical activity and cognitive function in apparently healthy young to middle-aged adults: A systematic review. Journal of Science and Medicine in Sport, 19(8), 616-628. DOI: [DOI:10.1016/j.jsams.2015.09.003] [PMID]
11. Croce, R. V., Horvat, M., & McCarthy, E. (2001). Reliability and concurrent validity of the movement assessment battery for children. Perceptual and Motor Skills, 93, 275-280. DOI: 10.2466/pms.2001.93.1.275 [DOI:10.2466/pms.2001.93.1.275] [PMID]
12. Davey, C. P. (1973). Physical exertion and mental performance. Ergonomics, 16(5), 595-599. DOI: 10.1080/00140137308924550 [DOI:10.1080/00140137308924550] [PMID]
13. Davranche, K., & Audiffren, M. (2004). Facilitating effects of exercise on information processing. Journal of Sport Sciences, 22, 419-428. DOI: 10.1080/02640410410001675289 [DOI:10.1080/02640410410001675289] [PMID]
14. Davranche, K., Audiffren, M., & Denjean, A. (2006). A distributional analysis of the effect of physical exercise on a choice reaction time task. Journal of Sports Sciences, 24(3), 323-329. DOI: 10.1080/02640410500132165 [DOI:10.1080/02640410500132165] [PMID]
15. Del Rossi, G., Malaguti, A., Del Rossi, S. (2014). Practice effects associated with repeated assessment of a clinical test of reaction time. Journal of Athletic Training, 49(3), 356-359. DOI: 10.4085/1062-6059-49.2.04 [DOI:10.4085/1062-6059-49.2.04] [PMID] [PMCID]
16. Dietrich, A. (2003). Functional neuroanatomy of altered states of consciousness: The transient hypofrontality hypothesis. Consciousness and Cognition, 12, 231-256. DOI: 10.1016/s1053-8100(02)00046-6 [DOI:10.1016/S1053-8100(02)00046-6] [PMID]
17. Dietrich, A., & Audiffren, M. (2011). The reticular-activating hypofrontality (RAH) model of acute exercise. Neuroscience and Biobehavioral Reviews, 35, 1305-1325. DOI: 10.1016/j.neubiorev.2011.02.001 [DOI:10.1016/j.neubiorev.2011.02.001] [PMID]
18. Ferrer-Roca, V., Bescós, R., Roig, A., Galilea, P., Valero, O., & García-López, J. (2014). Acute effects of small changes in bicycle saddle height on gross efficiency and lower limb kinematics. The Journal of Strength & Conditioning Research, 28 (3):784-791. DOI: 10.1519/JSC.0b013e3182a1f1a9 [DOI:10.1519/JSC.0b013e3182a1f1a9] [PMID]
19. Gibson, A.L., Wagner, D.R., & Heyward, V.H. (2019). Advanced fitness assessment and exercise prescription (8th Edition), Chapter 1, Physical Activity, health, and Chronic Disease (pp 2-27). Champaign, IL: Human Kinetics. ISBN: 9781492561347 [DOI:10.5040/9781718220966]
20. Hasbroucq, T., Burle, B., Bonnet, M., Possamai, C.-A., & Vidal, F. (2001). Dynamique du traitement de l'information sensori-motrice: Apport de l'électrophysiologie (The dynamics of information processing: Electrophysiological arguments). Canadian Journal of Experimental Psychology, 56(2), 75-97. DOI: 10.1037/h0087387 [DOI:10.1037/h0087387] [PMID]
21. Hwang, J., Brothers, R. M., Castelli, D. M., Glowacki, E. M., Chen, Y. T., Salinas, M. M., Kim, J., . . . Calvert, H. G. (2016). Acute high-intensity exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults. Neuroscience Letters, 630, 247-253. DOI: 10.1016/j.neulet.2016.07.033 [DOI:10.1016/j.neulet.2016.07.033] [PMID]
22. Ito, M., (1997). Fractionated reaction time as a function of magnitude of force in simple and choice conditions. Perceptual and Motor Skills 85, 435-444. DOI: 10.2466/pms.1997.85.2.435 [DOI:10.2466/pms.1997.85.2.435] [PMID]
23. Kao, S-C, Baumgartner, N., Nagy, C., Fu, H-L., Yang, C-T, & Wang, C-H. (2022). Acute effects of aerobic exercise on conflict suppression, response inhibition, and processing efficiency underlying inhibitory control processes: An ERP and SFT study. Psychophysiology, 59(8), e14032. DOI: 10.1111/psyp.14032 [DOI:10.1111/psyp.14032] [PMID]
24. Keppel, G, & Wickens, T. D. (2004). Design and analysis: A researcher's handbook (4th ed.). ISBN 13: 9780135159415.
25. Lambourne, K., & Tomporowski, P. D. (2010). The effect of acute exercise on cognitive task performance: A meta-regression analysis. Brain Research, 1341, 12-24. DOI: 10.1016/j.brainres.2010.03.091 [DOI:10.1016/j.brainres.2010.03.091] [PMID]
26. Malhorta, V., Goel, N., Ushadhar, Tripathi, Y., & Garg, R. (2015). Exercise and reaction times. Journal of Evolution of Medical and Dental Sciences, 4(25), 4227-4281. DOI:10.14260/jemds/2015/618 [DOI:10.14260/jemds/2015/618]
27. Malik, R., Schamiloglu, Y.L, & Sohal, V.S. (2022). Top-down control of hippocampal signal-to-noise by prefrontal long-range inhibition. Cell, 185(9), 1602-1617. DOI: 10.1016/j.cell.2022.04.001 [DOI:10.1016/j.cell.2022.04.001] [PMID] [PMCID]
28. McMorris, T. (2016). Developing the catecholamines hypothesis for the acute exercise-cognition interaction in humans: Lessons from animal studies. Physiology and Behavior, 165, 291-299. DOI: 10.1016/j.physbeh.2016.08.011 [DOI:10.1016/j.physbeh.2016.08.011] [PMID]
29. McMorris, T. (2021). The acute exercise-cognition interaction: From the catecholamines hypothesis to an interoception model. International Journal of Psychophysiology, 170, 75-88. DOI: 10.1016/j.ijpsycho.2021.10.005 [DOI:10.1016/j.ijpsycho.2021.10.005] [PMID]
30. McMorris, T., & Graydon, J. (2000). The effect of incremental exercise on cognitive performance. International Journal of Sport Psychology, 31(1), 66-81.
31. McMorris, T., & Hale, B. J. (2012). Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: a meta-analytical investigation. Brain and Cognition, 80(3), 338-351.DOI: 10.1016/j.bandc.2012.09.001 [DOI:10.1016/j.bandc.2012.09.001] [PMID]
32. McMorris, T., Tomporowski, P. Audiffren, M. (Editors) (2009). Exercise and cognitive function. John Wiley & Sons. ISBN: 978-0-470-51660-7 [DOI:10.1002/9780470740668]
33. Miyashita, T., & Williams, C. L. (2006). Epinephrine administration increases neural impulses propagated along the vagus nerve: Role of peripheral beta-adrenergic receptors. Neurobiology of Learning and Memory, 85, 116-124. DOI: 10.1016/j.nlm.2005.08.013 [DOI:10.1016/j.nlm.2005.08.013] [PMID]
34. Ozyemisci-Taskiran, O., Gunendi, Z., Bolukbasi, N., & Beyazova, M. (2008). The effect of a single session submaximal aerobic exercise on premotor fraction of reaction time: An electromyographic study. Clinical Biomechanics, 23(2), 231-235. DOI: 10.1016/j.clinbiomech.2007.08.027 [DOI:10.1016/j.clinbiomech.2007.08.027] [PMID]
35. Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73-89. DOI: 10.1146/annurev-neuro-062111-150525 [DOI:10.1146/annurev-neuro-062111-150525] [PMID] [PMCID]
36. Piepmeier, A. T., & Etnier, J. L. (2015). Brain-derived neurotrophic factor (BDNF) as a potential mechanism of the effects of acute exercise on cognitive performance. Journal of Sport and Health Science, 4, 14-23. DOI: 10.1016/j.jshs.2014.11.001 [DOI:10.1016/j.jshs.2014.11.001]
37. Pontifex, M. B., McGowan, A. L., Chandler, M. C., Gwizdala, K. L., Parks, A. C., Fenn, K., & Kamijo, K. (2019). A primer on investigating the after effects of acute bouts of physical activity on cognition. Psychology of Sport & Exercise, 40, 1-22. DOI: 10.1016/j.psychsport.2018.08.015 [DOI:10.1016/j.psychsport.2018.08.015]
38. Prabu Kumar, A., Omprakash, A., Kuppusamy, M, Maruthy, K. N., Sathiyasekaran, B. W. C., Vijayaraghavan, P. V., & Ramaswamy, P. (2020). How does cognitive function measured by the reaction time and critical flicker fusion frequency correlate with the academic performance of students? BMC Med Educ 20, Article Number: 507. [DOI:10.1186/s12909-020-02416-7] [PMID] [PMCID]
39. DOI: 10.1016/j.psychsport.2018.08.015 [DOI:10.1016/j.psychsport.2018.08.015]
40. Schapkin, S. A., Raggatz, J., Hillmert, M., & Bockelmann, I. (2020). EEG correlates of cognitive load in a multiple choice reaction task. Acta Neurobilogiae Experimentalis, 80, 76-89. DOI: http://dx.doi.org/10.21307/ane-2020-008 [DOI:10.21307/ane-2020-008] [PMID]
41. Spencer, K., & Coles, M. (1999). The lateral readiness potential: Relationship between human data and response activation in a connectionist model. Psychophysiology, 36(3), 364-370. DOI: 10.1017/s0048577299970749. [DOI:10.1017/S0048577299970749] [PMID]
42. Tomporowski, P. D. (2003). Effects of acute bouts of exercise on cognition. Acta Psychologica, 112, 297-324. DOI: 10.1016/s0001-6918(02)00134-8. [DOI:10.1016/S0001-6918(02)00134-8] [PMID]
43. Tsai, C-L., Pan, C-Y., Tseng, Y-T., Chen, F-C., Chang, Y-C., & Wang, T-C. (2021). Acute effects of high-intensity interval training and moderate-intensity continuous exercise on BDNF and irisin levels and neurocognitive performance in late middle-aged and older adults. Behavioural Brain Research, 413, 113472. DOI: 10.1016/j.bbr.2021.113472. [DOI:10.1016/j.bbr.2021.113472] [PMID]
44. Zhang, D., Ding, H., Wang, X., Qi, C., & Luo, Y. (2015). Enhanced response inhibition in experienced fencers. Scientific Reports, 5, 16282. DOI: 10.1038/srep16282 [DOI:10.1038/srep16282] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and Permissions
Creative Commons License This work is licensed under Attribution 4.0 International (CC BY 4.0).

© 2024 CC BY 4.0 | International Journal of Motor Control and Learning

Designed & Developed by : Yektaweb