Volume 5, Issue 1 (2-2023)                   IJMCL 2023, 5(1): 10-15 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Garmanjani U, Rostami R, Nazemzadegan G. (2023). Comparison of Hand-eye Coordination in High School and Conservatory Students. IJMCL. 5(1), 10-15. doi:10.52547/ijmcl.5.1.10
URL: http://ijmcl.com/article-1-133-en.html
Associate Professor, Department of Motor Behavior, Faculty of Educational Sciences and Psychology, Shiraz University, Shiraz, Iran. , rostami@shirazu.ac.ir
Abstract:   (1854 Views)
Background: The present study was conducted to determine the effect of selected demographic factors on the hand-eye coordination performance of secondary school students.
 Methods: The current research was of causal type - after the occurrence. A total of 326 high school teenagers were selected from 4 districts of Shiraz city (326 males, age range 16-18 years, 90.2% right-handed; 7.7% left-handed; 1.5% both hands; non-response 0.6). Then they were investigated using J Plus software, the available targeted sampling method, the Grooved pegboard test, and a researcher-made demographic form under the same implementation conditions.
Results: The one-way analysis of the variance test showed a significant difference between the fields of study (p= 0.02). Tukey's post hoc test in boys whose right hand was dominant found that this difference is between humanities and technical (p=0.009) and humanities and mathematics (p=0.005) groups.
Conclusion: Hand-eye coordination performance is more affected by the cognitive aspect and information processing, and all kinds of constraints can be considered an essential and influencing variable in the execution of movement patterns in which coordination plays a significant role.
Full-Text [PDF 558 kb]   (990 Downloads)    
  • Hand-eye coordination is the key and foundation of fine motor skills in motor development.
  • The most widely used hand-eye coordination test is the Grooved Pegboard Test (GPT).
  • The most important factors in coordination are: person, environment and task.
  • Hand-eye coordination performance is more influenced by the cognitive aspect and information processing.

Type of Study: Original Article | Subject: 1. Motor learning
Received: 2022/07/10 | Accepted: 2023/02/6

1. Álvarez, J. L. H., & Buendía, R. V. (2004). La evaluación en educación física: investigación y práctica en el ámbito escolar (Vol. 200): Grao.
2. Bezdicek, O., Nikolai, T., Hoskovcová, M., Štochl, J., Brožová, ., Dušek, P., . . . Růžička, E. (2014). Grooved pegboard predicates more of cognitive than motor involvement in Parkinson's disease. Assessment, 21(6), 723-730. [DOI:10.1177/1073191114524271]
3. Bryden, P., & Roy, E. (2005). A new method of administering the Grooved Pegboard Test: performance as a function of handedness and sex. Brain and cognition, 58(3), 258-268. [DOI:10.1016/j.bandc.2004.12.004]
4. Çakıt, E., Durgun, B., & Cetik, O. (2015). A neural network approach for assessing the relationship between grip strength and hand anthropometry. [DOI:10.14311/NNW.2015.25.030]
5. Egeland, J., Løvstad, M., Norup, A., Nybo, T., Persson, B. A., Rivera, D. F., . . . Arango-Lasprilla, J. C. (2016). Following international trends while subject to past traditions: Neuropsychological test use in the Nordic countries. The Clinical Neuropsychologist, 30(sup1), 1479-1500. [DOI:10.1080/13854046.2016.1237675]
6. Flouris, A. D., Cheung, S., Fowles, J., Kruisselbrink, L., Westwood, D. A., Carrillo, A. E., & Murphy, R. J. (2006). Influence of body heat content on hand function during prolonged cold exposures. Journal of Applied Physiology, 101(3), 802-808. [DOI:10.1152/japplphysiol.00197.2006]
7. Fong, K. N., Jim, E. S., Dong, V. A., & Cheung, H. K. (2013). 'Remind to move': a pilot study on the effects of sensory cueing treatment on hemiplegic upper limb functions in children with unilateral cerebral palsy. Clinical Rehabilitation, 27(1), 82-89. [DOI:10.1177/0269215512448199]
8. Fredriksen, P. M., Mamen, A., HJEllE, O. P., & Lindberg, M. (2018). Handgrip strength in 6-12-year-old children: the health oriented pedagogical project (HOPP). Scandinavian journal of public health, 46(21_suppl), 54-60. [DOI:10.1177/1403494818769851]
9. Gómez, M., Ruiz, L. M., & Mata, E. (2006). Los problemas evolutivos de coordinación en la adolescencia: Análisis de una dificultad oculta. RICYDE. Revista Internacional de Ciencias del Deporte, 2(3), 44-54. [DOI:10.5232/ricyde2006.00303]
10. Heaton, A., Gooding, A., Cherner, M., Umlauf, A., Franklin, D. R., Rivera Mindt, M., . . . Marquine, M. J. (2021). Demographically-adjusted norms for the Grooved Pegboard and Finger Tapping tests in Spanish-speaking adults: Results from the Neuropsychological Norms for the US-Mexico Border Region in Spanish (NP-NUMBRS) project. The Clinical Neuropsychologist, 35(2), 396-418. [DOI:10.1080/13854046.2020.1713400]
11. Instrument, L. (2015). Grooved Pegboard user's manual. PO Box, 5729.
12. Ives, J. C. (2013). Motor behavior: Connecting mind and body for optimal performance: Lippincott Williams & Wilkins.
13. Jongmans, M. J., Smits-Engelsman, B. C., & Schoemaker, M. M. (2003). Consequences of comorbidity of developmental coordination disorders and learning disabilities for severity and pattern of perceptual-motor dysfunction. Journal of learning disabilities, 36(6), 528-537. [DOI:10.1177/00222194030360060401]
14. Kanj, R., Zeinoun, P., Roukoz, C., & Mashmoushi, R. (2022). Factors associated with motor dexterity on the grooved pegboard test in a Lebanese sample. Applied Neuropsychology: Child, 11(2), 178-183. [DOI:10.1080/21622965.2020.1773269]
15. Lee, J. A., You, J. H., Kim, D. A., Lee, M. J., Hwang, P. W., Lee, N. G., . . . Kim, H.-K. (2013). Effects of functional movement strength training on strength, muscle size, kinematics, and motor function in cerebral palsy: A 3-month follow-up. NeuroRehabilitation, 32(2), 287-295. [DOI:10.3233/NRE-130846]
16. Lundergan, W. P., Soderstrom, E. J., & Chambers, D. W. (2007). Tweezer dexterity aptitude of dental students. Journal of Dental Education, 71(8), 1090-1097. [DOI:10.1002/j.0022-0337.2007.71.8.tb04375.x]
17. Mathiowetz, V., Weber, K., Kashman, N., & Volland, G. (1985). Adult norms for the nine hole peg test of finger dexterity. The Occupational Therapy Journal of Research, 5(1), 24-38. [DOI:10.1177/153944928500500102]
18. Matthews, C., & Klove, H. (1964). Instruction manual for the adult neuropsychology test battery. Madison, WI: University of Wisconsin Medical School, 36.
19. Mitrushina, M., Boone, K. B., Razani, J., & D'Elia, L. F. (2005). Handbook of normative data for neuropsychological assessment: Oxford University Press.
20. Moliner-Urdiales, D., Ruiz, J., Ortega, F., Jiménez-Pavón, D., Vicente-Rodriguez, G., Rey-López, J., . . . Marcos, A. (2010). Secular trends in health-related physical fitness in Spanish adolescents: the AVENA and HELENA studies. Journal of science and medicine in sport, 13(6), 584-588. [DOI:10.1016/j.jsams.2010.03.004]
21. Newell, K. (1986). Constraints on the development of coordination. Motor development in children: Aspects of coordination and control. [DOI:10.1007/978-94-009-4460-2_19]
22. O'Bryant, S. E., Edwards, M., Johnson, L., Hall, J., Gamboa, A., & O'jile, J. (2018). Texas Mexican American adult normative studies: Normative data for commonly used clinical neuropsychological measures for English-and Spanish-speakers. Developmental neuropsychology, 43(1), 1-26. [DOI:10.1080/87565641.2017.1401628]
23. Omar, M. T., Alghadir, A. H., Zafar, H., & Al Baker, S. (2018). Hand grip strength and dexterity function in children aged 6-12 years: A cross-sectional study. Journal of Hand Therapy, 31(1), 93-101. [DOI:10.1016/j.jht.2017.02.004]
24. Organization, W. H. (1995). Constitution of the world health organization.
25. Payne, V. G., & Isaacs, L. D. (2017). Human motor development: A lifespan approach: Routledge. [DOI:10.4324/9781315213040]
26. Ransil, B. J., & Schachter, S. C. (1994). Test-retest reliability of the Edinburgh Handedness Inventory and Global Handedness preference measurements, and their correlation. Perceptual and motor skills, 79(3), 1355-1372. [DOI:10.2466/pms.1994.79.3.1355]
27. Rivera Mindt, M., Marquine, M. J., Aghvinian, M., Scott, T. M., Cherner, M., Morlett Paredes, A., . . . Diaz-Santos, M. (2021). Demographically-adjusted norms for the processing speed subtests of the WAIS-III in a Spanish-speaking adult population: Results from the Neuropsychological Norms for the US-Mexico Border Region in Spanish (NP-NUMBRS) project. The Clinical Neuropsychologist, 35(2), 293-307. [DOI:10.1080/13854046.2020.1723707]
28. Rosenbaum, D. A. (1980). Human movement initiation: specification of arm, direction, and extent. Journal of Experimental Psychology: General, 109(4), 444. [DOI:10.1037/0096-3445.109.4.444]
29. Rosselli, M., Ardila, A., Bateman, J. R., & Guzman, M. (2001). Neuropsychological test scores, academic performance, and developmental disorders in Spanish-speaking children. Developmental neuropsychology, 20(1), 355-373. [DOI:10.1207/S15326942DN2001_3]
30. Schmidt, R. A., Lee, T. D., Winstein, C., Wulf, G., & Zelaznik, H. N. (2018). Motor control and learning: A behavioral emphasis: Human kinetics.
31. Schmidt, S. L., Oliveira, R. M., Rocha, F. R., & Abreu-Villaca, Y. (2000). Influences of handedness and gender on the grooved pegboard test. Brain and cognition, 44(3), 445-454. [DOI:10.1006/brcg.1999.1204]
32. Sivagnanasunderam, M., Gonzalez, D. A., Bryden, P. J., Young, G., Forsyth, A., & Roy, E. A. (2015). Handedness throughout the lifespan: cross-sectional view on sex differences as asymmetries change. Frontiers in Psychology, 5, 1556. [DOI:10.3389/fpsyg.2014.01556]
33. Skogan, A. H., Oerbeck, B., Christiansen, C., Lande, H. L., & Egeland, J. (2018). Updated developmental norms for fine motor functions as measured by finger tapping speed and the Grooved Pegboard Test. Developmental neuropsychology, 43(7), 551-565. [DOI:10.1080/87565641.2018.1495724]
34. Strauss, E., Sherman, E. M., & Spreen, O. (2006). A compendium of neuropsychological tests: Administration, norms, and commentary: American chemical society.
35. Tesio, L., Simone, A., Zebellin, G., Rota, V., Malfitano, C., & Perucca, L. (2016). Bimanual dexterity assessment: validation of a revised form of the turning subtest from the Minnesota Dexterity Test. International Journal of Rehabilitation Research. Internationale Zeitschrift fur Rehabilitationsforschung. Revue Internationale de Recherches de Readaptation, 39(1), 57. [DOI:10.1097/MRR.0000000000000145]
36. Thompson, L. L., Heaton, R. K., Matthews, C. G., & Grant, I. (1987). Comparison of preferred and nonpreferred hand performance on four neuropsychological motor tasks. The Clinical Neuropsychologist, 1(4), 324-334. [DOI:10.1080/13854048708520068]
37. Tolle, K. A., Rahman-Filipiak, A. M., Hale, A. C., Kitchen Andren, K. A., & Spencer, R. J. (2020). Grooved Pegboard Test as a measure of executive functioning. Applied Neuropsychology: Adult, 27(5), 414-420. [DOI:10.1080/23279095.2018.1559165]
38. Van Wijk, C. H., & Meintjes, W. (2015). Grooved Pegboard for adult employed South Africans: normative data and human immunodeficiency virus associations. South African Journal of Psychology, 45(4), 521-535. [DOI:10.1177/0081246315587692]
39. Wang, Y.-C., Bohannon, R. W., Kapellusch, J., Garg, A., & Gershon, R. C. (2015). Dexterity as measured with the 9-Hole Peg Test (9-HPT) across the age span. Journal of Hand Therapy, 28(1), 53-60. [DOI:10.1016/j.jht.2014.09.002]
40. Wilcox, G., & Nordstokke, D. (2022). Pediatric co-norms for finger tapping, grip strength, and grooved pegboard in a community sample. Journal of the International Neuropsychological Society, 28(1), 85-93. [DOI:10.1017/S1355617721000175]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and Permissions
Creative Commons License This work is licensed under Attribution 4.0 International (CC BY 4.0).

© 2024 CC BY 4.0 | International Journal of Motor Control and Learning

Designed & Developed by : Yektaweb