Volume 3, Issue 4 (11-2021)                   IJMCL 2021, 3(4): 1-11 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Eskandarnejad M, Rezaei F. The Effect of Physical Activity with Different Levels of Cognitive Load on Executive Control Network of Attention in Youth. IJMCL. 2021; 3 (4) :1-11
URL: http://ijmcl.com/article-1-65-en.html
PhD Student, Faculty of Physical Education and Sport Science, University of Urmia, West Azerbaijan, Iran
Abstract:   (370 Views)
Background: Physical and cognitive activities have positive effects on cognitive functions, but have been rarely applied in combination. The aim of present study was to investigate the effect of physical activity with different levels of cognitive load on executive control network of attention in youth.
Methods: 30 sedentary female students with an average age 22.63 ± 1.92 years were selected by convenience sampling and divided into three groups (physical activity without cognitive load, physical activity with cognitive load and control). The experimental groups practiced training program specific to groups for 16 sessions, but the control group performed their daily activities. Participants performed Attention Networks Test before and after the training program. Data were analyzed by ANCOVA in the significant level of 0.05.
Results: The results of statistical test showed no a significant difference between the scores of the three groups in executive control network of attention.
Conclusion: According to the results of this study, it seems that physical activity with and without cognitive load does not have a significant effect on the efficiency of the executive control network of attention in young people.
Full-Text [PDF 351 kb]   (299 Downloads)    
Type of Study: Original Article | Subject: 1-2. Neuroscience
Received: 2021/03/31 | Accepted: 2021/08/3 | Published: 2021/12/7

References
1. Barari, A. R., Bashiri, J., Rahimi, A. R., & Mokhtari, E. (2015). The effect of endurance and circuit resistance training on serum brain-derived neurotrophic factor and cortisol in inactive male students: A randomized clinical trial. Journal of ShahrekordUuniversity of Medical Sciences, 17(2), 43-53.
2. Barcelos, N., Shah, N., Cohen, K., Hogan, M. J., Mulkerrin, E., Arciero, P. J., . . . Anderson-Hanley, C. (2015). Aerobic and Cognitive Exercise (ACE) pilot study for older adults: executive function improves with cognitive challenge while exergaming. Journal of the International Neuropsychological Society, 21(10), 768-779. [DOI:10.1017/S1355617715001083]
3. Black, J. E., Isaacs, K. R., Anderson, B. J., Alcantara, A. A., & Greenough, W. T. (1990). Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proceedings of the National Academy of Sciences, 87(14), 5568-5572. [DOI:10.1073/pnas.87.14.5568]
4. Boucard, G. K., Albinet, C. T., Bugaiska, A., Bouquet, C. A., Clarys, D., & Audiffren, M. (2012). Impact of physicalactivity on executive functions in aging: a selective effect on inhibition among old adults. Journal of Sport and Exercise Psychology, 34(6), 808-827. [DOI:10.1123/jsep.34.6.808]
5. Bunce, D., & Murden, F. (2006). Age, aerobic fitness, executive function, and episodic memory. EuropeanJournal of Cognitive Psychology, 18(2), 221-233. [DOI:10.1080/09541440540000185]
6. Chaddock, L., Voss, M. W., & Kramer, A. F. (2012). Physical activity and fitness effects on cognition and brain health in children and older adults. Kinesiology Review, 1(1), 37-45. [DOI:10.1123/krj.1.1.37]
7. Chang, E., Chu, C., Karageorghis, C. I., Wang, C., Tsai, J., Wang, Y., & Chang, Y. (2017). Relationship between mode of sport training and general cognitive performance. Journal of Sport and Health Science, 6(1), 89-95. [DOI:10.1016/j.jshs.2015.07.007]
8. Change, Y., Pesce, C., Chiang, Y., Kuo, C., & Fong, D. (2015).Antecedent acute cycling exercise affects attention control: an ERP study using attention network test. Frontiers in human neuroscience, 9, 156. [DOI:10.3389/fnhum.2015.00156]
9. Colcombe, S. J., Kramer, A. F., Erickson, K. I., Scalf, P., McAuley, E., Cohen, N. J., . . . Elavsky, S. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences, 101(9), 3316-3321. [DOI:10.1073/pnas.0400266101]
10. De Vries, N., Van Ravensberg, C., Hobbelen, J., Rikkert, M. O., Staal, J., & Nijhuis-Van der Sanden, M. (2012). Effects of physical exercise therapy on mobility, physical functioning, physical activity and quality of life in community-dwelling older adults with impaired mobility, physical disability and/or multi-morbidity: a meta-analysis. Ageing research reviews, 11(1), 136-149. [DOI:10.1016/j.arr.2011.11.002]
11. Drollette, E. S., Scudder, M. R., Raine, L. B., Moore, R. D., Saliba, B. J., Pontifex, M. B., & Hillman, C. H. (2014). Acute exercise facilitates brain function and cognition in children who need it most: an ERP study of individual differencesin inhibitory control capacity. Developmental cognitive neuroscience, 7, 53-64. [DOI:10.1016/j.dcn.2013.11.001]
12. Du, Z., Li, Y., Li, J., Zhou, C., Li, F., & Yang, X. (2018). Physical activity can improve cognition in patients with Alzheimer's disease: a systematic review and meta-analysis of randomized controlled trials. Clinical interventions in aging, 13, 1593-1603. [DOI:10.2147/CIA.S169565]
13. Duchesne, C., Lungu, O., Nadeau, A., Robillard, M., Boré, A., Bobeuf, F., . . . Doyon, J. (2015). Enhancing both motor and cognitive functioning in Parkinson's disease: aerobic exercise as a rehabilitative intervention. Brain and cognition, 99, 68-77. [DOI:10.1016/j.bandc.2015.07.005]
14. Eggenberger, P., Schumacher, V., Angst, M., Theill, N., & de Bruin, E. D. (2015). Does multicomponent physical exercise with simultaneous cognitive training boost cognitiveperformance in older adults? A 6-month randomized controlled trial with a 1-year follow-up. Clinical interventions in aging, 10, 1335-1349. [DOI:10.2147/CIA.S87732]
15. Eskandarnejad, M., & Ashkriz, N. (2018). Learning Step by Step of Aerobics and stepp. Tabriz: University of Tabriz.
16. Eskandarnejad, M., & Rezaei, F. (2018). The Effect of Aerobic Exercise on Neural Networks of Attention and Working Memory. The Neuroscience Journal of Shefaye Khatam, 6(2), 31-40. [DOI:10.29252/shefa.6.2.31]
17. Fan, J., Gu, X., Guise, K. G., Liu, X., Fossella, J., Wang, H., & Posner, M. I. (2009). Testing the behavioral interaction and integration of attentional networks. Brain and cognition, 70(2), 209-220. [DOI:10.1016/j.bandc.2009.02.002]
18. Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of cognitive neuroscience, 14(3), 340-347. [DOI:10.1162/089892902317361886]
19. Fathirezaie, Z., Farsi, A., VaezMousavi, M. K., & ZamaniSani, S. H. (2015). Effect of cognitive training on efficiency of executive control network of attention. Journal of Research in Rehabilitation Sciences, 11(3), 182-192.
20. Flöel, A., Ruscheweyh, R., Krüger, K., Willemer, C., Winter, B., Völker, K., . . . Breitenstein, C. (2010). Physical activity and memory functions: are neurotrophins and cerebral gray matter volume the missing link? Neuroimage, 49(3), 2756-2763. [DOI:10.1016/j.neuroimage.2009.10.043]
21. Gordon, B. A., Rykhlevskaia, E. I., Brumback, C. R., Lee, Y., Elavsky, S., Konopack, J. F., . . . Gratton, G. (2008). Neuroanatomical correlates of aging, cardiopulmonary fitness level, and education. Psychophysiology, 45(5), 825-838. [DOI:10.1111/j.1469-8986.2008.00676.x]
22. Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nature reviews neuroscience, 9(1), 58-65. [DOI:10.1038/nrn2298]
23. Hillman, C. H., Motl, R. W., Pontifex, M. B., Posthuma, D., Stubbe, J. H., Boomsma, D. I., & De Geus, E. J. (2006). Physical activity and cognitive function in a cross-section of younger and older community-dwelling individuals. Health psychology, 25(6), 678-687. [DOI:10.1037/0278-6133.25.6.678]
24. Hopkins, M. E., Nitecki, R., & Bucci, D. J. (2011). Physical exercise during adolescence versus adulthood: differential effects on object recognition memory and brain-derived neurotrophic factor levels. Neuroscience, 194, 84-94. [DOI:10.1016/j.neuroscience.2011.07.071]
25. Huertas, F., Zahonero, J., Sanabria, D., & Lupiáñez, J. (2011). Functioning of the attentional networks at rest vs. during acute bouts of aerobic exercise. Journal of Sport and Exercise Psychology, 33(5), 649-665. [DOI:10.1123/jsep.33.5.649]
26. Johnson, N. F., Kim, C., Clasey, J. L., Bailey, A., & Gold, B. T. (2012). Cardiorespiratory fitness is positively correlated with cerebral white matter integrity in healthy seniors. Neuroimage, 59(2), 1514-1523. [DOI:10.1016/j.neuroimage.2011.08.032]
27. Li, L., Men, W.-W., Chang, Y.-K., Fan, M.-X., Ji, L., & Wei, G.-X. (2014). Acute aerobic exercise increases cortical activity during working memory: a functional MRI study in female college students. PloS one, 9(6), e99222. [DOI:10.1371/journal.pone.0099222]
28. Maleki, M., Bahram, A., Farokhi, A., Rajabi, H., & Yaryari, F. (2012). The Effect of Different Intensities of Aerobic Physical Exercise on the‎ Performance of Visual Choice Reaction Time and Stroop Test. Journal of Research in Psychological Health, 5(3), 1-12.
29. Moreau, D., Morrison, A. B., & Conway, A. R. (2015). An ecological approach to cognitive enhancement: complex motor training. Acta psychologica, 157, 44-55. [DOI:10.1016/j.actpsy.2015.02.007]
30. Pérez, L., Padilla, C., Parmentier, F. B., & Andrés, P. (2014). The effects of chronic exercise on attentional networks. PLoS One, 9(7), e101478. [DOI:10.1371/journal.pone.0101478]
31. Pescatello, L. S., Riebe, D., & Thompson, P. D. (2014). ACSM's guidelines for exercise testing and prescription. NewYork: Lippincott Williams&Wilkins.
32. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual review of neuroscience, 13(1), 25-42. [DOI:10.1146/annurev.ne.13.030190.000325]
33. Posner, M. I., & Rothbart, M. K. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology, 58, 1-23. [DOI:10.1146/annurev.psych.58.110405.085516]
34. Posner, M. I., Sheese, B. E., Odludaş, Y., & Tang, Y. (2006). Analyzing and shaping human attentional networks. Neural networks, 19(9), 1422-1429. [DOI:10.1016/j.neunet.2006.08.004]
35. Rahe, J., Becker, J., Fink, G. R., Kessler, J., Kukolja, J., Rahn, A., . . . Kalbe, E. (2015). Cognitive training with and without additional physical activity in healthy older adults: cognitive effects, neurobiological mechanisms, and prediction of training success. Frontiers in aging neuroscience, 7, 187. [DOI:10.3389/fnagi.2015.00187]
36. Renaud, M., Bherer, L., & Maquestiaux, F. (2010). A high level of physical fitness is associated with more efficient response preparation in older adults. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 65(3), 317-322. [DOI:10.1093/geronb/gbq004]
37. Rothbart, M. K., & Posner, M. I. (2006). Temperament, attention, and developmental psychopathology. In Handbook of Developmental Psychopathology. New York: Wiley.
38. Rueda, M. R., Checa, P., & Cómbita, L. M. (2012). Enhanced efficiency of the executive attentionnetwork after training in preschool children: immediate changes and effects after two months. Developmental cognitive neuroscience, 2, 192-204. [DOI:10.1016/j.dcn.2011.09.004]
39. Sadeghi, N., Khalaji, H., Nourozian, M., & Mokhtari, P. (2013). The impact of physical activity on the memory of women 50-70 years old with memory impairment. New Cellular and Molecular Biotechnology Journal, 3(11), 47-54.
40. Salthouse, T. A., & Davis, H. P. (2006). Organization of cognitive abilities and neuropsychological variables across the lifespan. Developmental Review, 26(1), 31-54. [DOI:10.1016/j.dr.2005.09.001]
41. Shayan, A., Bagherzadeh, F., Shahbazi, M., & Choobineh, S. (2015). The effect of two types of exercise (endurance and resistance) on attention and brain derived neurotropic factor levels in sedentary students. Journal of Motor Learning and Movement, 6(4), 433-452.
42. Sibley, B. A., & Beilock, S. L. (2007). Exercise and working memory: an individual differences investigation. Journal of Sport and Exercise Psychology, 29(6), 783-791. [DOI:10.1123/jsep.29.6.783]
43. Stones, M. J., & Kozma, A. (1988). Physical activity, age, and cognitive/motor performance In L. Howe & C.J. Brainerd (Eds.), Cognitive Development in Adulthood (pp. 271-321). New York: Springer-Verlag. [DOI:10.1007/978-1-4612-3852-2_9]
44. Tang, Y. (2013). Post-Learning activities and memory consolidation: the effect of physical and cognitive activities on memory consolidation[dissertation]. Oberlin College, Ohio.
45. Van den Berg, V., Saliasi, E., de Groot, R. H., Jolles, J., Chinapaw, M. J., & Singh, A. S. (2016). Physical activity in the school setting: Cognitive performance is not affected by three different types of acute exercise. Frontiers in Psychology, 7, 723. [DOI:10.3389/fpsyg.2016.00723]
46. Vaynman, S., & Gomez‐Pinilla, F. (2006). Revenge of the "sit": how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. Journal of neuroscience research, 84(4), 699-715. [DOI:10.1002/jnr.20979]
47. Vazou, S., Pesce, C., Lakes, K., & Smiley-Oyen, A. (2019). More than one road leads to Rome: a narrative review and meta-analysis of physical activity intervention effects on cognition in youth. International Journal of Sport and Exercise Psychology, 17(2), 153-178. [DOI:10.1080/1612197X.2016.1223423]
48. Weinstein, A. M., Voss, M. W., Prakash, R. S., Chaddock, L., Szabo, A., White, S. M., . . . Kramer, A. F. (2012). The association between aerobic fitness and executive function is mediated by prefrontal cortex volume. Brain, behavior, and immunity, 26(5), 811-819. [DOI:10.1016/j.bbi.2011.11.008]
49. Yaghubi, H., Karimi, M., Omidi, A., Barouti, E., & Abedi, M. (2012). Validity and Factor Structure f the General Health Questionnaire (GHQ-12) In University Students. International Journal Of Behavioral Sciences, 6(2), 153-160.
50. Zeidabadi, R., Arab Ameri, E., Naghdi, N., & Bolouri, B. (2014). The effect of low- intensity short and long term physical activity on spatial learning and memory in rat. Motor Behavior, 6(15), 155-172.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and Permissions
Creative Commons License This work is licensed under Attribution 4.0 International (CC BY 4.0).

© 2022 CC BY 4.0 | International Journal of Motor Control and Learning

Designed & Developed by : Yektaweb