Volume 4, Issue 1 (2-2022)                   IJMCL 2022, 4(1): 9-18 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nielsen B, Fjordside C, Jensen N, Hansen E. History Dependence of Freely Chosen Index Finger Tapping Rhythmicity. IJMCL. 2022; 4 (1) :9-18
URL: http://ijmcl.com/article-1-112-en.html
Associate Professor Sport Sciences – Performance and Technology, Department of Health Science and Technology, Aalborg University, Niels Jernes Vej 12, DK-9220 Aalborg, Denmark
Abstract:   (302 Views)
Highlights:
  • Voluntary, rhythmic, stereotyped, automated motor activities are basic to humans
  • Participants did initial submaximal tapping at low and high target tapping rates
  • Subsequently, they tapped at a freely chosen rate
  • The freely chosen rate was relatively low following the initial low tapping rate
  • The freely chosen tapping rate was found to be history dependent

Objective: To test the following hypothesis. Initial submaximal tapping at preset relatively low and high target tapping rates causes a subsequent freely chosen tapping rate to be relatively low and high, respectively, as compared with a reference freely chosen tapping rate.
Methods: Participants performed three 3-min bouts of submaximal index finger tapping on separate days. In one bout (C, considered reference), the rate was freely chosen, throughout. In another bout (A), initial tapping was performed at a relatively low target rate and followed by freely chosen tapping. In yet another bout (B), initial tapping was performed at a relatively high target rate, followed by freely chosen tapping.
Results: At the end of bout A, the rate was 14.6±23.7% lower than the reference value during bout C (p = 0.023). At the end of bout B, the rate was similar to the rate during bout C (p = 0.804).
Conclusions: Initial tapping at a preset relatively low target rate caused a subsequent freely chosen rate to be lower than a reference freely chosen rate. The observation was denoted a phenomenon of motor behavioural history dependence. Initial tapping at a preset relatively high target rate did not elicit history dependence.
Full-Text [PDF 339 kb]   (229 Downloads)    
Type of Study: Original Article | Subject: 2. Motor control
Received: 2021/11/19 | Accepted: 2022/02/12 | Published: 2022/02/16

References
1. Abbott, B. C., & Aubert, X. M. (1952). The force exerted by active striated muscle during and after change of length. J Physiol, 117, 77-86.
2. Berg, R. W., Willumsen, A., & Lindén, H. (2019). When networks walk a fine line: balance of excitation and inhibition in spinal motor circuits. Curr Opin Physiol, 8, 76-83. [DOI:10.1016/j.cophys.2019.01.006]
3. Bucher, D., Haspel, G., Golowasch, J., & Nadim, F. (2015). Central pattern generators. In: eLS. John Wiley & Sons, Ltd: Chichester. [DOI:10.1002/9780470015902.a0000032.pub2]
4. Calancie, B., Needham-Shropshire, B., Jacobs, P., Willer, K., Zych, G., & Green, B. A. (1994). Involuntary stepping after chronic spinal cord injury. Evidence for a central rhythm generator for locomotion in man. Brain, 117 ( Pt 5), 1143-1159. http://www.ncbi.nlm.nih.gov/pubmed/7953595 [DOI:10.1093/brain/117.5.1143]
5. De Luca, C. J., & Erim, Z. (1994). Common drive of motor units in regulation of muscle force. Trends Neurosci, 17, 299-305. https://doi.org/10.1016/0166-2236(94)90064-7 [DOI:0166-2236(94)90064-7]
6. Deliagina, T. G., Orlovsky, G. N., & Pavlova, G. A. (1983). The capacity for generation of rhythmic oscillations is distributed in the lumbosacral spinal cord of the cat. Exp Brain Res, 53, 81-90. [DOI:10.1007/BF00239400]
7. Dimitrijevic, M. R., Gerasimenko, Y., & Pinter, M. M. (1998). Evidence for a spinal central pattern generator in humans. Ann NY Acad Sci, 860, 360-376. http://www.ncbi.nlm.nih.gov/pubmed/9928325 [DOI:10.1111/j.1749-6632.1998.tb09062.x]
8. Duysens, J., & Forner-Cordero, A. (2019). A controller perspective on biological gait control: Reflexes and central pattern generators. Annual Reviews in Control, 48, 392-400. [DOI:10.1016/j.arcontrol.2019.04.004]
9. Frigon, A. (2017). The neural control of interlimb coordination during mammalian locomotion. J Neurophysiol, 117, 2224-2241. [DOI:10.1152/jn.00978.2016]
10. Grillner, S. (2009). Pattern generation. Encyclopedia of Neuroscience, 487-494. [DOI:10.1016/B978-008045046-9.01341-3]
11. Hansen, E. A. (2015). On voluntary rhythmic leg movement behaviour and control during pedalling. Acta Physiol, 214, Suppl S702, 1-18. [DOI:10.1111/apha.12529]
12. Hansen, E. A., Bak, S., Knudsen, L., Seiferheld, B. E., Stevenson, A. J. T., & Emanuelsen, A. (2020). Contralateral Transfer of the Phenomenon of Repeated Bout Rate Enhancement in Unilateral Index Finger Tapping. J Mot Behav, 52, 89-96. [DOI:10.1080/00222895.2019.1592101]
13. Hansen, E. A., Ebbesen, B. D., Dalsgaard, A., Mora-Jensen, M. H., & Rasmussen, J. (2015). Freely chosen index finger tapping frequency is increased in repeated bouts of tapping. J Mot Behav, 47, 490-496. [DOI:10.1080/00222895.2015.1015675]
14. Hansen, E. A., Nøddelund, E., Nielsen, F. S., Sørensen, M. P., Nielsen, M. Ø., Johansen, M., Andersen, M. H., & Nielsen, M. D. (2021). Freely chosen cadence during ergometer cycling is dependent on pedalling history. Eur J Appl Physiol (E-pub ahead of print). [DOI:10.1007/s00421-021-04770-w]
15. Hansen, E. A., & Ohnstad, A. E. (2008). Evidence for freely chosen pedalling rate during submaximal cycling to be a robust innate voluntary motor rhythm. Exp Brain Res, 186, 365-373. [DOI:10.1007/s00221-007-1240-5]
16. Herzog, W. (2004). History dependence of skeletal muscle force production: implications for movement control. Hum Mov Sci, 23, 591-604. [DOI:10.1016/j.humov.2004.10.003]
17. Hodgson, M., Docherty, D., & Robbins, D. (2005). Post-activation potentiation: underlying physiology and implications for motor performance. Sports Med, 35, 585-595. https://doi.org/10.2165/00007256-200535070-00004 [DOI:3574]
18. Kiehn, O. (2006). Locomotor circuits in the mammalian spinal cord. Annu Rev Neurosci, 29, 279-306. http://www.ncbi.nlm.nih.gov/pubmed/16776587 [DOI:10.1146/annurev.neuro.29.051605.112910]
19. Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159-174. http://www.ncbi.nlm.nih.gov/pubmed/843571 [DOI:10.2307/2529310]
20. Majczynski, H., Cabaj, A. M., Jordan, L. M., & Slawinska, U. (2020). Contribution of 5-HT2 Receptors to the Control of the Spinal Locomotor System in Intact Rats. Front Neural Circuits, 14, 14. [DOI:10.3389/fncir.2020.00014]
21. Miller, M. W. (2019). GABA as a Neurotransmitter in Gastropod Molluscs. Biol Bull, 236, 144-156. [DOI:10.1086/701377]
22. Mora-Jensen, M. H., Madeleine, P., & Hansen, E. A. (2017). Vertical finger displacement is reduced in index finger tapping during repeated bout rate enhancement. Motor Control, 21, 457-467. [DOI:10.1123/mc.2016-0037]
23. Sanchez, J. A. D., & Kirk, M. D. (2000). Short-term synaptic enhancement modulates ingestion motor programs of aplysia. J Neurosci, 20, RC85. https://www.ncbi.nlm.nih.gov/pubmed/10875940 [DOI:10.1523/JNEUROSCI.20-14-j0004.2000]
24. Sardroodian, M., Madeleine, P., Mora-Jensen, M. H., & Hansen, E. A. (2016). Characteristics of Finger Tapping Are Not Affected by Heavy Strength Training. J Mot Behav, 48, 256-263. [DOI:10.1080/00222895.2015.1089832]
25. Shima, K., Tamura, Y., Tsuji, T., Kandori, A., & Sakoda, S. (2011). A CPG synergy model for evaluation of human finger tapping movements. Conf. Proc. IEEE Eng. Med Biol Soc, 2011, 4443-4448. [DOI:10.1109/IEMBS.2011.6091102]
26. Teo, W. P., Rodrigues, J. P., Mastaglia, F. L., & Thickbroom, G. W. (2013). Comparing kinematic changes between a finger-tapping task and unconstrained finger flexion-extension task in patients with Parkinson's disease. Exp Brain Res, 227, 323-331. [DOI:10.1007/s00221-013-3491-7]
27. Wing, A. M., & Kristofferson, A. B. (1973). The timing of interresponse intervals. Percept Psychophys, 13, 455-460. [DOI:10.3758/BF03205802]
28. Yang, J. F., Stephens, M. J., & Vishram, R. (1998). Infant stepping: a method to study the sensory control of human walking. J Physiol, 507 ( Pt 3), 927-937. http://www.ncbi.nlm.nih.gov/pubmed/9508851 [DOI:10.1111/j.1469-7793.1998.927bs.x]
29. Young, W. B., Jenner, A., & Griffiths, K. (1998). Acute enhancement of power performance from heavy load squats. J Strength Cond Res, 12, 82-84. [DOI:10.1519/00124278-199805000-00004]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and Permissions
Creative Commons License This work is licensed under Attribution 4.0 International (CC BY 4.0).

© 2022 CC BY 4.0 | International Journal of Motor Control and Learning

Designed & Developed by : Yektaweb