Volume 3, Issue 1 (2-2021)                   IJMCL 2021, 3(1): 29-40 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bagheri S. Temporal and Spatial Parameters in Interpersonal Coordination of Jumping Rope Elite Boys. IJMCL. 2021; 3 (1) :29-40
URL: http://ijmcl.com/article-1-66-en.html
PhD of Motor Behavior, Physical Education and Sport Science, Farhangian University, Tehran, Iran
Abstract:   (731 Views)

Background: Coordination depends on online performance, and online feedback supports the successful coordination of individuals in joint implementations.

Objective: A specific purpose for the research was investigating temporal and spatial parameters in interpersonal coordination.

Methods: An applied research was done as a single-stage case study with 14 jumping rope elite boys (13-18 years). The subjects practiced the jumping rope tasks for 8 months so that they could do them properly and without online feedback. This study used a Vicon motion analysis device with six infrared cameras capable to record three-dimensional movements of the legs and rope whirling.

Results: The results of one-way ANOVA showed that with enough practice, even in the absence of feedback, landing position (spatial parameter) and hand-foot time deviation, timing variation in rope whirling, and landing time (temporal parameter) of joint groups will reach an equal level while a significant difference was observed in jump height (spatial parameter) and movement time (temporal parameter) between individuals (P≤0.05).

Conclusions: So, increasing task difficulty, amount and sustainability of inter-personal coordination will increase. Increasing joint task demands, amount and sustainability of interpersonal coordination will increase, and joining individual's power will be changed according to individual and joint tasks constraints.


Full-Text [PDF 402 kb]   (470 Downloads)    
Type of Study: Original Article | Subject: 2. Motor control
Received: 2020/10/12 | Accepted: 2021/01/10 | Published: 2021/02/14

1. Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature neuroscience, 11(9), 1109. [DOI:10.1038/nn.2182] [PMID]
2. Brennan, S. E., & Clark, H. H. (1996). Conceptual pacts and lexical choice in conversation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(6), 1482. [DOI:10.1037/0278-7393.22.6.1482]
3. Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., . . . Freund, H. J. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. European journal of neuroscience, 13(2), 400-404. https://doi.org/10.1046/j.1460-9568.2001.01385.x [DOI:10.1111/j.1460-9568.2001.01385.x]
4. Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: an FMRI study with expert dancers. Cerebral cortex, 15(8), 1243-1249. [DOI:10.1093/cercor/bhi007] [PMID]
5. Carston, R. (1999). Herbert H. Clark, Using language. Cambridge: Cambridge University Press, 1996. Pp. xi+ 432. Journal of Linguistics, 35(1), 167-222. [DOI:10.1017/S0022226798217361]
6. Casile, A., & Giese, M. A. (2006). Nonvisual motor training influences biological motion perception. Current biology, 16(1), 69-74. [DOI:10.1016/j.cub.2005.10.071] [PMID]
7. Chen, Y.-Y., Liaw, L.-J., Liang, J.-M., Hung, W.-T., Guo, L.-Y., & Wu, W.-L. (2013). Timing perception and motor coordination on rope jumping in children with attention deficit hyperactivity disorder. Physical Therapy in Sport, 14(2), 105-109. [DOI:10.1016/j.ptsp.2012.03.012] [PMID]
8. Cross, E. S., Hamilton, A. F. d. C., & Grafton, S. T. (2006). Building a motor simulation de novo: observation of dance by dancers. NeuroImage, 31(3), 1257-1267. [DOI:10.1016/j.neuroimage.2006.01.033] [PMID] [PMCID]
9. Cross, E. S., Kraemer, D. J., Hamilton, A. F. d. C., Kelley, W. M., & Grafton, S. T. (2009). Sensitivity of the action observation network to physical and observational learning. Cerebral cortex, 19(2), 315-326. [DOI:10.1093/cercor/bhn083] [PMID] [PMCID]
10. Della Gatta, F., Garbarini, F., Rabuffetti, M., Viganò, L., Butterfill, S. A., & Sinigaglia, C. (2017). Drawn together: when motor representations ground joint actions. Cognition, 165, 53-60. [DOI:10.1016/j.cognition.2017.04.008] [PMID]
11. Dötsch, D., Vesper, C., & Schubö, A. (2017). How you move is what I see: Planning an action biases a partner's visual search. Frontiers in psychology, 8, 77. [DOI:10.3389/fpsyg.2017.00077] [PMID] [PMCID]
12. Ellamil, M., Berson, J., Wong, J., Buckley, L., & Margulies, D. S. (2016). One in the dance: musical correlates of group synchrony in a real-world club environment. PloS one, 11(10). [DOI:10.1371/journal.pone.0164783] [PMID] [PMCID]
13. Grezes, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta‐analysis. Human brain mapping, 12(1), 1-19. https://doi.org/10.1002/1097-0193(200101)12:1<1::AID-HBM10>3.0.CO;2-V [DOI:10.1002/1097-0193(200101)12:13.0.CO;2-V]
14. Keller, P. E., Knoblich, G., & Repp, B. H. (2007). Pianists duet better when they play with themselves: on the possible role of action simulation in synchronization. Consciousness and cognition, 16(1), 102-111. [DOI:10.1016/j.concog.2005.12.004] [PMID]
15. Kilner, J. M., Vargas, C., Duval, S., Blakemore, S.-J., & Sirigu, A. (2004). Motor activation prior to observation of a predicted movement. Nature neuroscience, 7(12), 1299. [DOI:10.1038/nn1355] [PMID]
16. Knoblich, G., Butterfill, S., & Sebanz, N. (2011). Psychological research on joint action: theory and data Psychology of learning and motivation (Vol. 54, pp. 59-101): Elsevier. [DOI:10.1016/B978-0-12-385527-5.00003-6]
17. Knoblich, G., & Flach, R. (2001). Predicting the effects of actions: Interactions of perception and action. Psychological science, 12(6), 467-472. [DOI:10.1111/1467-9280.00387] [PMID]
18. Knoblich, G., & Jordan, J. S. (2003). Action coordination in groups and individuals: Learning anticipatory control. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(5), 1006. [DOI:10.1037/0278-7393.29.5.1006] [PMID]
19. Kourtis, D., Sebanz, N., & Knoblich, G. (2010a). Favouritism in the motor system: social interaction modulates action simulation. Biology Letters, rsbl20100478. [DOI:10.1098/rsbl.2010.0478] [PMID] [PMCID]
20. Kourtis, D., Sebanz, N., & Knoblich, G. (2010b). Favouritism in the motor system: social interaction modulates action simulation. Biology letters, 6(6), 758-761. [DOI:10.1098/rsbl.2010.0478] [PMID] [PMCID]
21. Kourtis, D., Woźniak, M., Sebanz, N., & Knoblich, G. (2019). Evidence for we-representations during joint action planning. Neuropsychologia, 131, 73-83. [DOI:10.1016/j.neuropsychologia.2019.05.029] [PMID] [PMCID]
22. Light, J. G., & Warner, W. J. (1983). STATISTICS FOR SOCIAL SCIENTISTS. By Louis Cohen and Michael Holliday. Harper & Row 1982. International Journal of Social Psychiatry, 29(3), 236-236. [DOI:10.1177/002076408302900313]
23. Magill, R. A., & Lee, T. D. (1998). Motor Learning: Concepts and Applications: Laboratory Manual: WCB McGraw-Hill.
24. Prinz, W. (1997). Perception and action planning. European journal of cognitive psychology, 9(2), 129-154. [DOI:10.1080/713752551]
25. Ramenzoni, V. C., Davis, T. J., Riley, M. A., Shockley, K., & Baker, A. A. (2011). Joint action in a cooperative precision task: nested processes of intrapersonal and interpersonal coordination. Experimental brain research, 211(3-4), 447-457. [DOI:10.1007/s00221-011-2653-8] [PMID]
26. Ramnani, N., & Miall, R. C. (2004). A system in the human brain for predicting the actions of others. Nature neuroscience, 7(1), 85-90. [DOI:10.1038/nn1168] [PMID]
27. Richardson, D. C., & Dale, R. (2005). Looking to understand: The coupling between speakers' and listeners' eye movements and its relationship to discourse comprehension. Cognitive science, 29(6), 1045-1060. [DOI:10.1207/s15516709cog0000_29] [PMID]
28. Richardson, D. C., Dale, R., & Kirkham, N. Z. (2007). The art of conversation is coordination. Psychological science, 18(5), 407-413. [DOI:10.1111/j.1467-9280.2007.01914.x] [PMID]
29. Richardson, M. J., Marsh, K. L., Isenhower, R. W., Goodman, J. R., & Schmidt, R. C. (2007). Rocking together: Dynamics of intentional and unintentional interpersonal coordination. Human movement science, 26(6), 867-891. [DOI:10.1016/j.humov.2007.07.002] [PMID]
30. Richardson, M. J., Marsh, K. L., & Schmidt, R. (2005). Effects of visual and verbal interaction on unintentional interpersonal coordination. Journal of Experimental Psychology: Human Perception and Performance, 31(1), 62. [DOI:10.1037/h0049034]
31. Sacheli, L. M., Arcangeli, E., & Paulesu, E. (2018). Evidence for a dyadic motor plan in joint action. Scientific reports, 8(1), 1-12. [DOI:10.1038/s41598-018-23275-9] [PMID] [PMCID]
32. Schmidt, R., Bienvenu, M., Fitzpatrick, P., & Amazeen, P. (1998). A comparison of intra-and interpersonal interlimb coordination: Coordination breakdowns and coupling strength. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 884. [DOI:10.1037/0096-1523.24.3.884]
33. Sebanz, N., Bekkering, H., & Knoblich, G. (2006). Joint action: bodies and minds moving together. Trends in cognitive sciences, 10(2), 70-76. [DOI:10.1016/j.tics.2005.12.009] [PMID]
34. Sebanz, N., & Knoblich, G. (2009). Prediction in joint action: What, when, and where. Topics in Cognitive Science, 1(2), 353-367. [DOI:10.1111/j.1756-8765.2009.01024.x] [PMID]
35. Shockley, K., Santana, M.-V., & Fowler, C. A. (2003). Mutual interpersonal postural constraints are involved in cooperative conversation. Journal of Experimental Psychology: Human Perception and Performance, 29(2), 326. [DOI:10.1037/0096-1523.29.2.326] [PMID]
36. Song, J.-H., & Nakayama, K. (2009). Hidden cognitive states revealed in choice reaching tasks. Trends in cognitive sciences, 13(8), 360-366. [DOI:10.1016/j.tics.2009.04.009] [PMID]
37. Stoffregen, T. A., Giveans, M. R., Villard, S., Yank, J. R., & Shockley, K. (2009). Interpersonal postural coordination on rigid and non-rigid surfaces. Motor Control, 13(4), 471-483. [DOI:10.1123/mcj.13.4.471] [PMID]
38. Temprado, J., Swinnen, S., Carson, R. G., Tourment, A., & Laurent, M. (2003). Interaction of directional, neuromuscular and egocentric constraints on the stability of preferred bimanual coordination patterns. Human movement science, 22(3), 339-363. [DOI:10.1016/S0167-9457(03)00049-6]
39. van der Wel, R. P. (2015). Me and we: Metacognition and performance evaluation of joint actions. Cognition, 140, 49-59. [DOI:10.1016/j.cognition.2015.03.011] [PMID]
40. van Ulzen, N. R., Lamoth, C. J., Daffertshofer, A., Semin, G. R., & Beek, P. J. (2008). Characteristics of instructed and uninstructed interpersonal coordination while walking side-by-side. Neuroscience letters, 432(2), 88-93. [DOI:10.1016/j.neulet.2007.11.070] [PMID]
41. Varlet, M., Nozaradan, S., Nijhuis, P., & Keller, P. E. (2020). Neural tracking and integration of 'self'and 'other'in improvised interpersonal coordination. NeuroImage, 206, 116303. [DOI:10.1016/j.neuroimage.2019.116303] [PMID]
42. Vesper, C., Abramova, E., Bütepage, J., Ciardo, F., Crossey, B., Effenberg, A., . . . Nijssen, S. R. (2017). Joint action: mental representations, shared information and general mechanisms for coordinating with others. Frontiers in psychology, 7, 2039. [DOI:10.3389/fpsyg.2016.02039] [PMID] [PMCID]
43. Vesper, C., Knoblich, G., & Sebanz, N. (2014). Our actions in my mind: motor imagery of joint action. Neuropsychologia, 55, 115-121. [DOI:10.1016/j.neuropsychologia.2013.05.024] [PMID]
44. Vesper, C., van der Wel, R. P., Knoblich, G., & Sebanz, N. (2011). Making oneself predictable: Reduced temporal variability facilitates joint action coordination. Experimental brain research, 211(3-4), 517-530. [DOI:10.1007/s00221-011-2706-z] [PMID] [PMCID]
45. Vesper, C., van der Wel, R. P., Knoblich, G., & Sebanz, N. (2013). Are you ready to jump? Predictive mechanisms in interpersonal coordination. Journal of Experimental Psychology: Human Perception and Performance, 39(1), 48. [DOI:10.1037/a0028066] [PMID]
46. Welsh, T. N., & Elliott, D. (2004). Movement trajectories in the presence of a distracting stimulus: Evidence for a response activation model of selective reaching. The Quarterly Journal of Experimental Psychology Section A, 57(6), 1031-1057. [DOI:10.1080/02724980343000666] [PMID]
47. Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological bulletin, 131(3), 460. [DOI:10.1037/0033-2909.131.3.460] [PMID]
48. Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358(1431), 593-602. [DOI:10.1098/rstb.2002.1238] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and Permissions
Creative Commons License This work is licensed under Attribution 4.0 International (CC BY 4.0).

© 2022 CC BY 4.0 | International Journal of Motor Control and Learning

Designed & Developed by : Yektaweb